About us

 The germ cell lineage ensures the creation of new individuals, perpetuating/diversifying the genetic and epigenetic information across the generations. We have been investigating the mechanism for germ cell development, and have shown that mouse embryonic stem cells (mESCs)/induced pluripotent stem cells (miPSCs) are induced into primordial germ cell-like cells (mPGCLCs) with a robust capacity both for spermatogenesis and oogenesis, and for contributing to healthy offspring. We have also shown that human induced pluripotent stem cells (hiPSCs) robustly generate human primordial germ cell-like cells (hPGCLCs). Furthermore, by investigating the development of a non-human primate model, cynomolgus monkeys, we have defined a developmental coordinate of pluripotency among mice, monkeys, and humans, and shown that the germ cell lineage in primates is specified in the nascent amnion, providing a pivotal insight into the biological relevance of the hPGCLC induction pathway. More recently, we have succeeded in differentiating hPGCLCs into human oogonia that undergo a proper epigenetic reprogramming and acquire an immediately precursory state for meiotic entry. We hope that these lines of research will lead to a better understanding of the mechanism for the transmission/diversification of genetic information, for the regulation of epigenetic information, and for the acquisition of totipotency, among mice, monkeys, and humans.